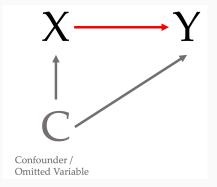
Introduction to Instrumental Variables

Econ 140, Section 7

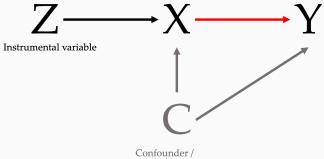
Jonathan Old

- 1. (Group) data projects
- 2. Introduction to Instrumental Variables
- 3. IV Conditions
- 4. IV Summary
- 5. Group work

Any questions?

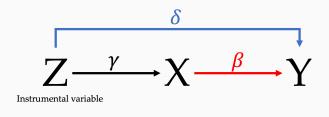

... Remember - Every question is useful!

(Group) data projects


- I prepared a document that can help you find data if you are lost. See it here.
- The first deadline is this Friday.
- Group work encouraged!

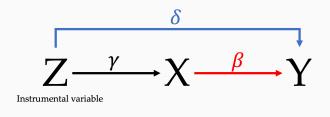
Introduction to Instrumental Variables

Recap: Omitted Variable Bias



Instrumental variables: The setup

Omitted Variable


Recap: IV "rescales" the effect

A simple example:

- We want to know the effect of chocolate (*X*) on happiness (*Y*), using a randomized voucher as instrument (*Z*).
- We find: people with voucher were 3 points more happy ($\delta = 3$), and ate 0.5 more chocolates ($\gamma = 0.5$).
- Then, the effect of eating one more chocolate is:

Recap: IV "rescales" the effect

A simple example:

- We want to know the effect of chocolate (*X*) on happiness (*Y*), using a randomized voucher as instrument (*Z*).
- We find: people with voucher were 3 points more happy ($\delta = 3$), and ate 0.5 more chocolates ($\gamma = 0.5$).
- Then, the effect of eating one more chocolate is: $\beta = \delta/\gamma = 3/0.5 = 6.$

Calculating the IV coefficient

What is the effect of eating chocolate (D) on happiness (Y).

• Why not estimate: $Y_i = \alpha + \beta D_i + \varepsilon_i$?

Randomly give voucher to buy chocolate at 90% discount (Z).

• Why not estimate: $Y_i = \alpha + \beta Z_i + \varepsilon_i$?

Let us set up some regressions:

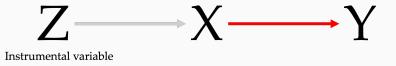
Regression of interest: $Y_i = \alpha + \beta D_i + e_i$ First stage: $D_i = \alpha_1 + \gamma Z_i + u_i$ Reduced Form: $Y_i = \alpha_2 + \delta Z_i + v_i$ Plug in regression of interest: $Y_i = \alpha + \beta(\alpha_1 + \gamma \cdot Z_i + u_i) + e_i$ Get back reduced form: $= \underbrace{(\alpha + \beta \alpha_1)}_{\alpha_2} + \underbrace{(\beta \gamma)}_{\delta} Z_i + \underbrace{(\beta u_i + e_i)}_{v_i}$ So we see that $\delta = \beta \gamma \Leftrightarrow \beta = \delta/\gamma$ • How do we interpret γ ?

• How do we interpret γ ? The average difference in chocolate consumption between those who got a voucher and those who didn't

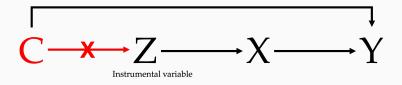
- How do we interpret γ ? The average difference in chocolate consumption between those who got a voucher and those who didn't
- How do we interpret δ ?

- How do we interpret γ ? The average difference in chocolate consumption between those who got a voucher and those who didn't
- How do we interpret δ ? The average difference in happiness between those who got a voucher and those who didn't

- How do we interpret γ ? The average difference in chocolate consumption between those who got a voucher and those who didn't
- How do we interpret δ ? The average difference in happiness between those who got a voucher and those who didn't

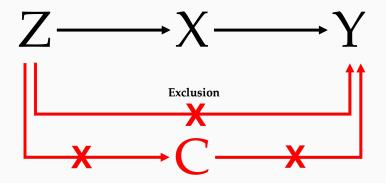

$$\beta = \frac{\gamma}{\delta} = \frac{E[Y_i \mid Z_i = 1] - E[Y_i \mid Z_i = 0]}{E[D_i \mid Z_i = 1] - E[D_i \mid Z_i = 0]}$$

Potential outcomes! (unobserved)		Does not get voucher (Z=0)	
Gets voucher (Z=1)		Eats chocolate (D=1)	Does not eat chocolate (D=0)
	Eats chocolate (D=1)	Always-takers: E(D Z=1)=E(D Z=0)=1 → E(Y Z=1)=E(Y Z=0)	Compliers
	Does not eat chocolate (D=0)	Defiers	Never-takers: E(D Z=1)=E(D Z=0)=0 → E(Y Z=1)=E(Y Z=0)


IV Conditions

Does IV always work?

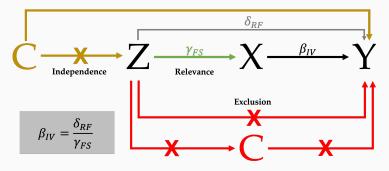
- No! It only works if we have a valid instrument
- For this, we need three conditions:
- 1. Relevance: Z must truly affect X



- \cdot No! It only works if we have a valid instrument
- For this, we need three conditions:
- 2. Independence/Exogeneity: *Z* is as good as randomly assigned

Does IV always work?

- No! It only works if we have a valid instrument
- For this, we need three conditions:
- 3. Exclusion: The ONLY way that Z affects Y is via X!



IV Summary

IV summary

We need the following three assumptions for IV to work:

- 1 Relevance: Z must truly affect X
- 2 Independence/Exogeneity: *Z* is as good as randomly assigned
- **Exclusion Restriction**: The **only** way that *Z* affects *Y* is via *X*.

How IV estimates can be different from OLS estimates

- **OVB:** If OLS had omitted variable bias, and our instrument is valid, then the IV estimate should be different. We can check whether this is plausible with the OVB formula
- **Measurement error:** If we have random measurement error in the independent variable (*X*), then we can use IV to overcome this. In that case, the IV coefficient will be larger (in absolute value) than the OLS coefficient
- LATE: OLS gives us ATT + Selection Bias, while IV gives us the treatment effect on the compliers (LATE). The ATT may be different from LATE, even without selection bias.
- Invalid IV: Hard to determine what exactly is going on
- Sampling variation: This can just happen by chance

- There is a catch in IV: independence (exogeneity) and exclusion restriction only need to hold **conditionally**
- This means: If we **know** C, we can control for it in the IV regression, and the concerns go away
- But then, we have the old OLS problems again (we maybe need to control for lots of things)
- So we should only do this in cases where we really know all the C's.

Any questions?

... Remember - Every question is useful!

Group work

Group work

- Group 1: We are interested in the effect of being in the army on crime. We instrument being in the army with a lottery (paper)
- *Group 2*: We are interested in the effect of income on conflict. We instrument income with rainfall (paper)
- Group 3: We are interested in the effect of air pollution on mortality. We instrument local air pollution with wind direction (paper)
 - 1 Relevance: Z must truly affect X
 - Independence/Exogeneity: Z is as good as randomly assigned
 - **3** Exclusion restriction: The **only** way that Z affects Y is via X

Your job: Discuss whether these assumptions hold!

Any questions?

... Remember - Every question is useful!